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Abstract Following the deregulation of the power

industry, transmission expansion planning (TEP) has

become more complicated due to the presence of uncer-

tainties and conflicting objectives in a market environment.

Also, the growing concern on global warming highlights

the importance of considering carbon pricing policies

during TEP. In this paper, a probabilistic TEP approach is

proposed with the integration of a chance constrained load

curtailment index. The formulated dynamic programming

problem is solved by a hybrid solution algorithm in an

iterative process. The performance of our approach is

demonstrated by case studies on a modified IEEE 14-bus

system. Simulation results prove that our approach can

provide network planners with comprehensive information

regarding effects of uncertainties on TEP schemes, allow-

ing them to adjust planning strategies based on their risk

aversion levels or financial constraints.

Keywords Power system planning, Emission reduction,

Dynamic programming, Risk management

1 Introduction

1.1 Transmission expansion planning

Transmission expansion planning (TEP) refers to com-

prehensive studies on determining the time, location, and

type of adding new power transmission lines as well as the

associated electrical components, in order to ensure the

economic, secure, and reliable operations of a power sys-

tem [1]. There are a variety of factors contributing to the

necessity of TEP, including load growth, components’

entry or decommissioning, technological improvement,

policy incentive, etc. [2]

Following the advent of electricity markets in many

countries, power industry has been transformed from a

vertically integrated and regulated utility to an un-

bundled and liberalized structure. This deregulation

and restructuring has resulted in fundamental changes

to the power system TEP practices [3, 4]. For instance,

the emergence of various self-interested market par-

ticipants such as brokers and independent power pro-

ducers has made planning difficult due to conflicting

objectives and uncertainties in a market environment

[5, 6].

Moreover, the power sector is one of the biggest

emission sources and should take a key responsibility in

promoting the coordinated development among econ-

omy, energy and environment by mitigating carbon

emission [7, 8]. This concern on carbon emission miti-

gation is driving the need to explore power system

planning practices under the mode of low-carbon econ-

omy, e.g. network planning to facilitate the integration

of renewable energy and/or to encourage clean power

outputs. Therefore, power system planning becomes

more complicated under the impacts of different emis-

sion reduction policies.
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1.2 Carbon pricing policies

Some key carbon pricing policies in the world are

summarized as follows. In 2003 in the U.S., carbon emis-

sion allowances could be traded among American corpo-

rations under a voluntary scheme on Chicago Climate

Exchange. In October 2003, the EU parliament approved a

new emission trading scheme in order to meet its com-

mitment made in the Kyoto Protocol. Following this, an

EU emission trading scheme (ETS), which was the largest

multinational, greenhouse gas emission trading scheme in

the world, was enforced in February 2005. Under the EU

ETS, a specific allowance for emission was allocated to

each EU member and any excessive allowance could be

sold to whom was in need of allowances. Some allowances

were permitted to be transferred between countries through

joint implementation (JI) or clean development mecha-

nisms (CDM), but these transfers should be validated by

the United Nations Framework Convention on Climate

Change (UNFCCC). This type of EU ETS is also called

cap-and-trade. In April 2007, an emission price of $15 NZ

per carbon equivalent was implemented. In September

2008, the New Zealand ETS was legislated, and it adopted

all free allocation without caps. In July 2010, India intro-

duced a nationwide carbon tax of about $1.07 US on coal,

as coal was a major fuel resource for power generation in

India. In November 2011, China had a pilot test of carbon

trading in seven provinces and a national trading is

expected to start in 2016. In July 2012, the Australian

government introduced a carbon price of $23 AU per ton of

emitted carbon equivalent, but this carbon price has been

phased out.

1.3 Review of TEP

Conventional TEP models are formulated as minimizing

investment costs of adding new lines. The widely used

deterministic and static TEP model in a regulated power

utility is defined as [6, 9, 10]:

Minimize
X

i;j2N

Cijgij þ k
X

i2N

ri ð1Þ

subject to

STFþ gþ r ¼ L ð2Þ

Fij � Bij g0
ij þ gij

� �
hi � hj

� �
¼ 0 ð3Þ

Fij

�� ��� g0
ij þ gij

� �
Fij ð4Þ

0� g� g ð5Þ
0� r�L ð6Þ

0� gij� gij ð7Þ

gij is integer, and i; j 2 N ð8Þ

where Cij is the investment cost of a line added to corridor

i�j; gij
0 and gij are the initial number of lines between i�j and

the number of new added lines; ri is load curtailment at bus i

due to insufficient transmission capacity, associated with a

penalty factor k; S is the branch incidence matrix; vectors

F; g; r; L denote active power flow, active power output of

generators, load curtailment and predicted load, with ele-

ments of Fij, gi, ri, Li respectively; Bij denotes the suscep-

tance of a line between i�j; hi is the phase angle at bus i; �ð Þ
denotes the upper bounds; N is the total bus number.

To obtain the value of ri, usually an optimal power flow

(OPF) model is employed to reschedule power generations

and alleviate violations of network constraints. The

objective of this OPF model is to minimize the total load

curtailment [11]. Note this penalty factor for ri helps the

optimization process in (1) to find an economical planning

solution without a loss of load.

However, the above model is more suitable for a vertically

regulated power system, as they do not take into account the

market interactions among various stakeholders, e.g. con-

gestion costs caused by different marginal generation costs

[12]. By contrast, the main objective of TEP in a new

deregulated environment is to provide all stakeholders with

nondiscriminatory access to cheap, secure and clean energy

resources, subject to reliability and other criteria [13].

1.4 Contributions of this paper

The key contributions of the paper are:

1) A chanced constrained load curtailment index is

proposed;

2) A risk based probabilistic TEP model is proposed with

the consideration of planning uncertainties;

3) A novel hybrid solution algorithm in an iterative

process is proposed to solve the formulated multistage

programming problem.

2 Formulated probabilistic model

2.1 Define probabilistic load curtailment

In order to consider uncertainties in TEP, we propose a

probabilistic formulation to reflect the level of load cur-

tailment bounded by a threshold, rmax. This load curtail-

ment threshold is common in industrial practice. For

instance, in Australia, expected energy not supplied

(EENS) should be less than 0.002% of total energy
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consumption, which is also the network planning criterion

used by the Australian Energy Market Operator (AEMO)

[14]. In our probabilistic approach, the loss of load item in

(1) is replaced by a percentage of having load curtailment

over the threshold, as given in (9) and (10).

Note the meaning of kR is different from k. In (1), k is the

cost of each unit of load loss, whereas kR is just a penalty

factor and without special meaning, whose unit could be set

as $. With this penalty factor, any TEP schemes with or

without excessive load curtailment can be included in the

optimization process, helping search a bigger solution region

and avoiding premature convergence to a local optima.
X

i;j2N

Cijgij þ kRR ð9Þ

R ¼

0
X

i2NL

ri� rmax

X

i2NL

ri � rmax

rmax

X

i2NL

ri [ rmax

8
>>>><

>>>>:

ð10Þ

When TEP takes into account a variety of uncertainties

such as load and wind power output, a commonly used

approach is using Monte Carlo (MC) simulations to sample

uncertainty scenarios. After simulation stops, EENS is

obtained as the average or mean of unsupplied power in the

simulation after solving the optimal power flow problems.

Planning schemes selected by this method are optimal in

the statistical sense, leading to low-probability scenarios

being discounted [6]. Moreover, in practice, TEP

investment costs may be very high to guarantee that there

is no excessive load curtailment at all times.

Alternatively, in this paper, we propose to find a planning

scheme which can attain an acceptable probability of non-

excessive load curtailment within system operational con-

straints. The second term in (9) is transferred into a proba-

bility version and this probability is required to be higher

than a specified criterion a, as shown in (11). This probabi-

listic approach is rational particularly when network plan-

ners are subject to financial constraints or have different risk

aversion levels. After that, a chanced constrained index e is

defined as shown in (12). This index becomes a new objec-

tive that should be included into the optimization process.

Pr
X

i2NL

ri� rmax

( )
� a ð11Þ

e ¼
0 Pr

X

i2NL

ri� rmax

( )
� a

a� Pr
X

i2NL

ri� rmax

( )
Pr

X

i2NL

ri� rmax

( )
\a

8
>>>>><

>>>>>:

ð12Þ

2.2 Carbon emission modelling

As summarized in Section 1.2, in general there are two

types of carbon pricing policies: mode 1 is carbon tax;

mode 2 is carbon trading [15], [16, 17]. In mode 1, only

when the annual carbon emission exceeds free emission

allowances, power generators will incur a cost for the

excessive emission based on the carbon price. In mode 2,

power generators can either sell their emission allowance

surpluses or by the shortage in allowance from the

emission trading market. Therefore, there will be some

operating benefits for clean power generators that emit

less than their emission allowance. On the other hand,

power generators whose annual emission is greater than

allowance will incur higher operating costs from buying

extra emission allowance. Detailed mathematical formu-

lations of the two emission pricing modes are given in

(13) and (14). Note that in (14) Ui,t can be either positive

or negative value, representing cost or benefit from

emission trading.

Ui;t ¼
0

XND

k¼1

diDk;tgi;k;t �Ai;t

XND

k¼1

diDk;tgi;k;t � Ai;t

XND

k¼1

diDk;tgi;k;t [ Ai;t

8
>>>><

>>>>:

ð13Þ

Ui;t ¼
XND

k�1

diDk;tgi;k;t � Ai;t ð14Þ

where Ui,t and Ai,t are the net annual emission and the

annual free allowance for generator i in year t; di is the

emission coefficient of the generators; gi,k,t is the power

output of generator i at load block k in year t; Dk,t is the

duration of load block k in year t; ND is the total number of

load blocks.

2.3 Uncertainties modelling

In this paper, uncertainties taken into account are wind

power outputs, component working state of the power

system, load growth and carbon price. Four types of

probability density functions (PDFs) are used to model

those uncertainties. Parameters of these PDFs can be

obtained based on historical data. MC simulations are

deployed to randomly generated scenarios composed by

values from the four PDFs.

Wind speed V is generally modeled by a Weibull dis-

tribution [18, 19]. Wind power outputs can be derived by

wind speed and a power curve of wind power generators. A

piecewise function as given in (15) is widely used to model

a power curve [20].

16 Jing QIU et al.
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PW ¼

0 0�V\VIn

Prate
W

V � VIn

Vrate � VIn

VIn�V\Vrate

Prate
W Vrate�V �VOut

0 VOut\V

8
>>>>><

>>>>>:

ð15Þ

where PW is the power output of wind power generators,

whose rated power output is PW
rate; VIn, Vrate, VOut are cut-

in, rated and cut-out wind speeds, respectively.

The PDF of wind power output i.e. Ppdf is given in (16).

PrW
zero, PrW

rate denote probabilities of zero and rated wind

power output. d(•) is the Dirac delta function used to rep-

resent the discrete wind output PDF. y(•) can be expressed by

either a fitted polynomial function or discrete samples [9].

Ppdf PWð Þ ¼

Przero
W d PWð Þ PW ¼ 0

y PWð Þ 0\PW\Prate
W

Prrate
W d PW � Prate

W

� �
PW ¼ Prate

W

0 otherwise

8
>>>>>>>><

>>>>>>>>:

ð16Þ

The availability of power system components is

modelled by a Binomial PDF [21]. The probability Prstate

of a availability state is given in (17) and (18). Xdown
state , Xup

state

denote sets of components in unavailable and available

states. rFOR is the forced outage rate of components.

Pr state ¼
Y

i2Xstate
down

1� Pr ið Þ
Y

j2Xstate
up

Pr j

� �
ð17Þ

Pr j ¼ 1� rFOR ð18Þ

Uncertainties of load L are modelled by a Normal PDF

with mean l and standard deviation r, as given in (19) [18].

Ppdf l; l; rð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2
p exp � L� lð Þ2

2r2

" #
ð19Þ

Uncertainties of carbon price / are modelled by a

Weibull PDF with scale parameter s and shape parameter

q, as given in (20) [15].

Ppdf u; s; qð Þ ¼ q
s

u
s

� �q�1

exp � u
s

� �qh i
ð20Þ

2.4 Proposed probabilistic model

A multi-stage probabilistic TEP model is formulated as

minimizing the total cost with the chance constrained index

et proposed in Section 2.1, as follows.

Minimize

XT

t¼1

X

i;j2N

Cij gij;t � gij;t�1

� �

1þ cð Þt�1
þ
XT

t¼1

keet

1þ cð Þt�1

þ
XT

t¼1

XND

k¼1

XNG

i¼1

Dk;tCOigi;k;t

1þ cð Þt�1
þ
XT

t¼1

XNG

i¼1

uUi;t

1þ cð Þt�1

ð21Þ

subject to
X

i;j2N

Fij;k;t þ
X

i2NG

gi;k;t þ
X

i2NL

ri;k;t�
X

i2NL

Li;k;t ¼ 0 ð22Þ

Fij;k;t � Bij g0
ij;t þ gij;t

� �
hi;k;t � hj;k;t

� �
¼ 0 ð23Þ

Fij;k;t

�� ��� gij;t�1 þ gij;t

� �
Fij;k;t ð24Þ

0� gi;k;t � gi ð25Þ

0� ri;k;t� Li;k;t ð26Þ

0� gij;t� gij ð27Þ

gij;t is integer, and i; j 2 N ð28Þ

Equation (21) is a model represented by net present

value (NPV) with a discount rate c. T is the total planning

horizon. i, j are superscripts for buses. k, t are superscripts

for load block and planning year respectively. The first

term is the investment cost, and the second term is the

chance constrained index at year t scaled by a penalty

factor ke. The third term is the operating cost of power

generators, whose incremental cost of output is denoted by

COi. The total number of generators in the system is NG.

The fourth term is the cost of carbon emission, derived

from carbon price and the net annual emission of power

generators.

For completeness, we use a piecewise function to derive

the quadratic losses in the DC power model, as given in

(29)-(37). Note losses are not incorporated into the objec-

tive function. Instead, they are considered as the additional

active power in (22) required from power generation, in

order to satisfy the nodal balance due to the presence of

losses.

The detailed linearization process is given as follow.

Ploss
ij;k;t � 2Gcondij 1� cos hi�j;k;t

� �
� Gcondijh

2
i�j;k;t ð29Þ

h2
i�j;k;t �

XH

h¼1

- hð ÞDhi�j;k;t hð Þ ð30Þ

- hð Þ ¼ 2h� 1ð Þ
hmax

i�j;t

H
ð31Þ

hi�j;k;t ¼ hþi�j;k;t � h�i�j;k;t ð32Þ

hi�j;k;t

���
��� ¼

XH

h¼1

Dhi�j;k;t hð Þ ¼ hþi�j;k;t þ h�i�j;k;t ð33Þ

0� hþi�j;k;t� vhmax
i�j;t ð34Þ

0� h�i�j;k;t� 1� vð Þhmax
i�j;t ð35Þ

0�Dhi�j;k;t hð Þ�
hmax

i�j;t

H
ð36Þ

0�Dhi�j;k;t hð Þ�Dhi�j;k;t h� 1ð Þ ð37Þ
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Where Pij,k,t
loss , hi-j,k,t are the active power losses and phase

angle difference between i�j at load block k in year t,

repectively; Gcondij is the line conductance; the quadratic

term hi-j,k,t
2 is linearized by a piecewise function, as shown

in Fig. 1; H is the total number of intersection, with a h-th

intersection of Dhi-j,k,t(h), and the slope is -(h); two

nonnegative slack variables hi-j,k,t
? , hi-j,k,t

- are introduced to

replace hi-j,k,t, and they are also bounded by a binary

variable v to make this replacement effective, as shown in

(32)-(35). Equations (36)-(37) can ensure the linear inter-

section on the left side is always filled up first.

3 Solution algorithms

Solution algorithms for TEP problems mainly fall into

either mathematical programming classes or heuristic

search classes. Mathematical programming methods have

strict requirements on the model itself (e.g. the problem or

the continuous relaxation of the problem should be convex)

and can provide more clues on the quality of the final

solution [22]. However, mathematical programming

methods tend to be trapped by local optima in some cases.

On the contrary, heuristic methods are suitable for sto-

chastic global search, free from problem formulation dif-

ficulties and can escape from premature local optimal. The

drawbacks of heuristic methods are: the quality of the

solution cannot be guaranteed; and prohibitive computation

efforts are required [22, 23, 24].

In this paper, the proposed TEP model is a dynamic

optimization problem with a chance constrained reliability

evaluation. To enhance the solution performance of the

proposed model, a hybrid method based on decomposition

is proposed as follows.

The overall stochastic programming problem can be

divided into two subproblems: 1) the investment

subproblem in the first and second terms of the defined

objective; 2) the operating subproblem in the third and

fourth terms of the defined objective. Note that the

investment subproblem is targeted at a specific planning

year, whereas the operating decisions are subject to the

decisions from the investment subproblem and should be

evaluated over multiple years thereafter [25].

Firstly, an evolutionary algorithm is deployed to help

the optimization process in subproblem 1 to find a bigger

set of expansion candidates. In this paper, differential

evolution (DE) is used, as it is shown faster, simpler and

more robust [6]. Secondly, the subproblem 2 can be

soundly solved by a state-of-the-art nonlinear programming

technique, such as the interior point (IP) method. IP is

widely used in solving power system operation and dis-

patch problems, because the optimality of the solution

found by IP is guaranteed [26]. Moreover, IP has higher

efficiency in searching local optima [26], which means that

IP can quickly locate local optima for the subproblem 2,

adding them to new generation in the evolution process. As

shown in Fig. 2, the two subproblems are solved in an

iterative way to progressively converge to the final solu-

tion. The termination criterion can be defined by two ways:

the maximum iteration number is reached; or the objective

value does not improve for a few successive generations.

The main procedure of the proposed hybrid method is

given as follows:

1) Determine the PDFs of wind speed, carbon price, load,

and FOR based on historical data. Note that the PDF of

wind power outputs is translated from the wind power

curve in (15).

2) MC simulations are deployed to generate values of

wind power outputs, load, component availability, and

carbon price from the PDFs in step 1).

3) Initialize the population of the EA corresponding to

the number of new added lines. Note that the quality of

initial population has great impacts on the final

solution. Therefore, in this process, uncertain features

are neglected and some deterministic values are

assigned. To be specific, carbon price is set to its

tkji ,,−θ( )1,, tkji−Δθ ...( )2,, tkji−Δθ ( )Htkji ,,−Δθ

2
,, tkji−θ

( )1ϖ
( )2ϖ

( )Hϖ

Fig. 1 Piecewise linear approximation of phase angle difference

between i�j

Investment subproblem Operating subproblem

Obtain PDFs of
uncertainties
Determine the time,
location and type of
new lines
Calculate total
investment cost and
the probabilistic index
of reliability

Solve DC optimal
power flow
Perform N-1 security
assessment for all
critical contingencies
Calculate operating
cost and emission cost

TEP schemes solved
by heuristic methods

Updated the candidate
line set Identify network

violations solved by
mathematical methods

Fig. 2 An iterative solution algorithm for the decomposed two

subproblems
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mean value, wind power output is set to the installed

capacity scaled by its capacity factor, all components

are set as available, and load is set as (l ? 3r).

4) Using the initial values generated by step 3), denoted

by gG ¼ gij;0; 8i; j 2 N
� 	

, apply the IP to generate

local optima, i.e. subproblem 2 is solved with this

generation. In this process, IP can solve the DC

optimal power flow (OPF) for each individual in the

population. Note if network violations are identified, a

linear programming is required to minimize the total

load curtailment, i.e. re-dispatching of generation is

not based on bids or marginal costs. Then calculate the

operating and carbon emission costs and add the two

local optima to gGþ1. Also, based on identify network

violations, find the probability of Pr
P

i2NL

ri� rmax

( )
,

and calculate the probabilistic index of reliability.

5) Start mutation and recombination process. Integers

representing adding or reducing lines will be generated

and recombined.

6) For each TEP scheme, the objective function in (21) is

assigned as the fitness value. A newly generated child

individual is compared with the parent, and replaces it

if the fitness value of the child is smaller.

7) Terminate the algorithm if the stopping criterion is

satisfied, otherwise go back to step 2).

4 Case studies

In this section, a series of numerical experiments are

undertaken to demonstrate the performance of the proposed

model on the modified IEEE 14-bus system. The 14-bus

system initially has five power generators, and 20 trans-

mission corridors.

In our paper, the five power generators in the base case

are assumed to be fossil-fuel-fired, and the carbon emission

coefficients for them are set as 1.2, 1, 0.8, 0.8 and 0.6 tCO2/

MWh respectively. Other power generation types such as

hydro power or nuclear power could be included as future

works. Moreover, for simplicity, power generators are

assumed to receive 80% of their emission allowances for

free based on their emissions in the base year, and free

allowances will decrease linearly each year to 30% in the

last planning horizon. Note that allocating emission

allowances is a complex issue involving political motiva-

tion. The assumption made in this paper regarding emission

allocation is in accordance with the EU ETS practice,

which can be found in [27].

The total generation capacity of the base system is 720

MW, while the total load is 440 MW. Durations for load

blocks are 20%, 50%, 29% and 1%. As illustrated in Fig. 3,

two wind farms with capacities of 50 MW are assumed to

be installed at buses 9 and 11. The two wind farms are

assumed to be totally independent, and therefore the wind

speeds for modelling their outputs are randomly generated

from two different Weibull distribution functions. Param-

eters for modelling the wind power curve are VIn = 4,

Vrate = 10, VOut = 22m/s. To model the possibility of N-1

contingencies, transmission lines outages are modelled by a

rFOR of 1%. The mean value of carbon prices is set as

E[u] = $23/tCO2. The planning horizon is set as five

years, and the annual load growth rate is 5%, with uncer-

tainties of r=l ¼ 2%, i.e. l = 0.05, r = 0.001.

The capacity of each candidate line is 100 MW, and up

to four lines are allowed for each corridor. The investment

cost is assumed to be 50 M$/100 km. We set the upper

bound of load curtailment threshold as a percentage of the

total annual energy demand, i.e. rmax = 0.1%. To make et

have a significant effect in the objective function, the

penalty factor ke is set big enough to ensure that planning

schemes with considerable load curtailments will be

eliminated in the optimization process during the heuristic

search. The settings of a and ke are 95% and $1 9 109.

In order to make a comparison and demonstrate the

performance of the proposed probabilistic approach, three

deterministic TEP studies with different carbon pricing

policies are undertaken, i.e. deterministic TEP with no

emission price, deterministic TEP in carbon mode 1 and

mode 2 respectively with a carbon price of $23/tCO2. As

illustrated in Table 1, investment costs for three deter-

ministic models are all 378.25 M$, whereas the investment

cost for Case 4 is the highest due to the volatility of

emission market. For operating cost, Case 1 is the lowest as

G

G

G

G

G1
2 3

4
7 8

5

6 11 10 14

12

13

9

Fig. 3 Modified IEEE 14-bus system with two wind power

generators
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a result of no carbon pricing policies. Moreover, compared

to Case 2, the operating cost in Case 3 is lower. This is

because some power generators can earn benefits in the

emission trading market if they have lower emission

coefficient. Although the carbon price uncertainty increases

the investment cost in Case 4, the total cost in Case 4 is

lower compared to that in Case 2 (1,107.77 vs 1,119.22

M$), reflecting the operating benefits of carbon mode 2. It

should be noted that, if stochastic features are removed, i.e.

without uncertainties of wind power, load and carbon price,

for zero load curtailment and selected line outages, the

results of the probabilistic and deterministic TEP are

identical, which validates the applicability of our approach.

Furthermore, comparisons in Table 1 reveal that the plan-

ning schemes identified by deterministic TEP are greatly

affected by carbon price uncertainties, leading to a high

probability of load curtailment. This may imply that the

deterministic TEP is insufficient, particularly when

exposed to higher risks of uncertainties.

As mentioned in Section 2.1, the probability a is defined

as the lower bound for each planning scheme the possi-

bility of having load curtailment below the required

threshold, and a 2 [0, 1]. This probability can be inter-

preted as a risk measure, which can be chosen by network

planners. The higher value of a, the more important to

choose a plan without excessive load curtailment, leading

to a higher investment cost (more conservative). We set a
as three different levels to run simulations of Case 4. The

probabilities of load curtailment are given in Fig. 4. As

seen, a plan chosen by a higher a is said to be risk averse,

whereas a plan chosen by lower a is said to be risk pre-

ferring. Note a higher a also increases the probability of no

load curtailment (see the intersections on the Y-axis in

Fig. 4). In this way, our probabilistic approach can provide

comprehensive information for network planners regarding

the balance between minimizing investment costs and

minimizing the risk of load curtailment in the face of

uncertainties.

The detailed result of our probabilistic TEP in carbon

mode 2 is given in left column in Table 2. As given in the

right two columns in Table 2, carbon price uncertainties

(i.e. high standard deviation) make a planning scheme

expose to higher risk, requiring higher investment cost for

meeting the a criterion (the initial a is set as 95%). As seen,

if the standard deviation of carbon prices is set above $3/

tCO2, investment costs have to be increased as a becomes

lower than 95%. Also, the same situation will happen when

the mean of carbon prices are raised from $23/tCO2 to $35/

tCO2, which implies that more use of intermittent renew-

able energy (e.g. wind power), will increase TEP uncer-

tainties, thus requiring higher investment costs. These

findings are also supported by simulation results in Fig. 5.

According to Fig. 5, the total costs without carbon price or

with fixed carbon price are always lower than total costs

with carbon price uncertainties in both modes 1 and 2,

regardless of the value of a.

To examine the effects of different upper bounds of the

maximum load curtailment parameter rmax, we run simu-

lations to obtain the total cost with different values of a. As

shown in Fig. 6, the higher rmax, the lower total cost. This is

more obvious with a conservative planning scheme, i.e.

with a higher a. In addition, results of the total cost against

total installed wind power capacity with different a values

are given in Fig. 7. As seen, for a specific a, it is possible to

obtain the optimal wind power capacity, i.e. the lowest

total cost when integrating different wind power capacities

into the system. For instance, when a is chosen as 95%, in

order to obtain the lowest total cost, the optimal wind

power capacity to be integrated into the power system

should be about 60 MW. This finding is of significance for

renewable energy integration analysis, as the rapid growth

Table 1 Comparisons of deterministic and probabilistic TEP with different carbon pricing policies

Case No Total cost (M$) Invest. cost (M$) Operating cost (M$) Emission cost (M$)

Case 1: deterministic TEP with no emission price 890.36 378.25 512.11 0

Case 2: deterministic TEP in mode 1 with $23/tCO2 1119.22 378.25 615.62 125.35

Case 3: deterministic TEP in mode 2 with $23/tCO2 1061.48 378.25 572.98 110.25

Case 4: probabilistic TEP in mode 2 1107.77 415.64 586.77 105.36
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of wind power will have significant impact on power sys-

tem operations and planning [28]. Moreover, our approach

can reveal the relationship between the overall system cost

and the risk of load curtailment with the presence of wind

power uncertainties. Therefore, our probabilistic TEP

model serves a good indicative role in achieving low car-

bon economy, in terms of identifying a robust and cost-

effective planning scheme.

5 Conclusion

This paper has proposed a probabilistic TEP model with

a chance constrained load curtailment index. Planning

uncertainties such as wind power output, component

availability, load, and carbon price are incorporated by a

Monte Carlo simulation based approach. Our multi-stage

planning objective is formulated as minimizing the total

cost, including investment cost, operating cost, emission

cost and a risk factor of load curtailment. For completeness,

a piecewise approximation function is used to linearize the

quadratic power losses. Meanwhile, a novel iterative solu-

tion algorithm combing heuristic search and mathematical

programming is proposed to solve the formulated a dynamic

optimization problem. The performance of the proposed

approach is demonstrated by a modified IEEE 14-bus sys-

tem. Simulation results have proved that our approach can

give network planners an opportunity to trade-off between

the overall cost and the probability of load curtailment in

the presence of uncertainties. Our approach can also pro-

vide network planners with comprehensive information

regarding effects of uncertainties on TEP schemes, allowing

them to adjust planning strategies based on their risk

aversion levels or financial constraints. Moreover, our

approach can be used for renewable energy integration

analysis in terms of long-term network planning. Therefore,

our novel TEP approach is a risk-based, flexible decision

Table 2 Final result against different carbon price characteristics

Lines added Different carbon price

characteristics ($/tCO2)

a

g1–2,t=2 = 1; g4–10,t=2 = 1; g7–9,t=2 = 1; g6–11,t=3 = 2; g10–11,t=3 = 1;

g12–13,t=3 = 1; g14–9,t=3 = 1; g2–3,t=4 = 2; g3–4,t=4 = 3; g1–2,t=5 = 1;

g1–5,t=5 = 1; g5–6,t=5 = 4; g6–11,t=5 = 2; g12–13,t=5 = 1

Mean is 23; std. is 3 0.9575

Mean is 23; std. is 5 0.9028

Mean is 35; td. is 3 0.9329

Mean is 35; std. is 5 0.8266
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tool, which is important for achieving low carbon economy

through planning practices.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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